Sequentially Compact, Franklin-Rajagopalan Spaces

نویسندگان

  • Peter J. Nyikos
  • J. E. Vaughan
  • J. E. VAUGHAN
چکیده

A locally compact T2-space is called a Franklin-Rajagopalan space (or FR-space) provided it has a countable discrete dense subset whose complement is homeomorphic to an ordinal with the order topology. We show that (1) every sequentially compact FR-space X can be identified with a space constructed from a tower T on w (X = X(T)), and (2) for an ultrafilter u on w, a sequentially compact FR-space X(T) is not u-compact if and only if there exists an ultrafilter v on w such that v D T, and v is below u in the RudinKeisler order on w*. As one application of these results we show that in certain models of set theory there exists a family T of towers such that I T I < 2W, and nH{X(T): T E T } is a product of sequentially compact FR-spaces which is not countably compact (a new solution to the Scarborough-Stone problem). As further applications of these results, we give consistent answers to questions of van Douwen, Stephenson, and Vaughan concerning initially m-chain compact and totally initially m-compact spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A RELATED FIXED POINT THEOREM IN n FUZZY METRIC SPACES

We prove a related fixed point theorem for n mappings which arenot necessarily continuous in n fuzzy metric spaces using an implicit relationone of them is a sequentially compact fuzzy metric space which generalizeresults of Aliouche, et al. [2], Rao et al. [14] and [15].

متن کامل

SEQUENTIAL S ∗ - COMPACTNESS IN L - TOPOLOGICAL SPACES ∗ SHU - PING LI Mudanjiang

In this paper, a new notion of sequential compactness is introduced in L-topological spaces, which is called sequentially S∗-compactness. If L = [0, 1], sequential ultra-compactness, sequential N-compactness and sequential strong compactness imply sequential S∗-compactness, and sequential S∗-compactness implies sequential F-compactness. The intersection of a sequentially S∗-compact L-set and a ...

متن کامل

SEQUENTIALLY COMPACT S-ACTS

‎‎The investigation of equational compactness was initiated by‎ ‎Banaschewski and Nelson‎. ‎They proved that pure injectivity is‎ ‎equivalent to equational compactness‎. ‎Here we define the so‎ ‎called sequentially compact acts over semigroups and study‎ ‎some of their categorical and homological properties‎. ‎Some‎ ‎Baer conditions for injectivity of S-acts are also presented‎.

متن کامل

PFA(S)[S] and countably compact spaces

We show a number of undecidable assertions concerning countably compact spaces hold under PFA(S)[S]. We also show the consistency without large cardinals of every locally compact, perfectly normal space is paracompact.

متن کامل

PFA(S)[S] and Locally Compact Normal Spaces

We examine locally compact normal spaces in models of form PFA(S)[S], in particular characterizing paracompact, countably tight ones as those which include no perfect pre-image of ω1 and in which all separable closed subspaces are Lindelöf.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013